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Abstract

The objective of this paper is to use Biot�s theory and the Johnson–Koplik–Dashen dynamic permeability model in

wave field simulation of a heterogeneous porous medium. The Johnson–Koplik–Dashen dynamic permeability model

was originally formulated in the frequency domain. In this paper, the time domain drag force expression of the model is

expressed in terms of the shifted fractional derivative of the relative fluid velocity. In contrast to the exponential-type

viscous relaxation models, the convolution operator in the Johnson–Koplik–Dashen dynamic permeability model can-

not be replaced by memory variables satisfying first-order relaxation differential equations. A new method for calculat-

ing the shifted fractional derivative without storing and integrating the entire velocity histories is developed. Using the

new method to calculate the fractional derivative, the governing equations for the two-dimensional porous medium are

reduced to a system of first-order differential equations for velocities, stresses, pore pressure and the quadrature

variables associated with the drag forces. Spatial derivatives involved in the first-order differential equations system

are calculated by Fourier pseudospectral method, while the time derivative of the system is discretized by a predic-

tor–corrector method. For the demonstration of our method, some numerical results are presented.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The mechanics of porous media has important applications in geophysics, in particular, in seismol-

ogy, geotechnical engineering and petroleum engineering. For example, successful oil recovery depends
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on the seismic monitoring of the fluid flow in a porous reservoir. It is believed that pore fluids play an

important role in the generation of earthquakes. Liquefaction of saturated sand due to dynamic loads

has been an important topic in earthquake engineering for a long time. The first theory of wave prop-

agation in a fluid-saturated porous medium was put forward by Biot [1,2]. Biot�s theory was also ex-

tended to include anisotropy and viscoelastic properties of the matrix [3]. The most important
achievement of Biot�s theory was the prediction of the second kind P-wave in one-fluid-saturated por-

ous medium [4]. After the establishment of Biot�s theory, many investigators have used it to study the

wave propagation in a porous medium. For example, the propagation of Rayleigh waves in saturated

poroelastic half-space was studied by Jones [5] and Deresiewicz [6]. Deresiewicz and Skalak [7] studied

the question of uniqueness of solutions for Biot�s equations and the corresponding boundary conditions

for the solutions. Also, dynamic Green�s function for a two-dimensional half space was developed by

Senjuntichai and Rajapakse [8]. Norris [9] derived the Green�s function for a point force applied in

an unbounded poroelastic medium in frequency domain. Based on the Green�s function for four inde-
pendent variables (three for the skeleton displacements and one for pore pressure), the frequency do-

main boundary element method for homogeneous porous medium was developed by Zimmerman

and Stern [10]. More recently, the asymptotic ray theory for porous medium was developed by Hanyga

and Seredynska [11] and the time domain asymptotic Green�s functions have been obtained in explicit

form in [12].

However, one may find that up to now the research concerning saturated porous medium has been

mainly limited to the homogeneous case, while the research on heterogeneous porous media is in a pre-

liminary stage. Recently, with the development of algorithm for numerical schemes for partial differen-
tial equation and computer technology, the inhomogeneous wave field calculation for porous medium

begins to attract the attention of researchers. For example, Ozdenvar and McMechan [13] developed a

staggered-grid algorithm for computation of wave propagation in an inhomogeneous porous medium in

terms of displacement formulation. However, the drag force between the fluid and the solid skeleton is

assumed to be a linear function of the relative velocity, which is valid only in the low-frequency

approximation. The low-frequency approximation only applies to signal frequency ranges below the

characteristic frequency of the medium [1,2]. Carcione [14] developed an algorithm for a heterogeneous

linear anisotropic porous medium. In Carcione�s work both the low-frequency range and the high-
frequency range are considered. For the high-frequency range, the drag force relaxation is represented

by a exponential-type kernel. Therefore, the convolutions involved in the drag forces are eliminated by

introduction of corresponding internal variables [15]. The exponential-type relaxation function and cor-

responding derivative are bounded at small times. However, there is ample experimental and theoretical

evidence to the effect that the viscoelastic relaxation function or its derivatives are unbounded at t! 0.

In particular, it has been justified by the dynamic permeability theory [16] of a saturated porous med-

ium that the drag force model should be consistent with the presence of boundary layer thickness dx�1/2

for the high-frequency range where d is a constant. This implies that the memory effect for the drag force
should be expressed in terms of a time convolution with a singularity t�1/2 for t ! 0. For example, the Biot

model [2], the Johnson–Koplik–Dashen (JKD) model [16], the Pride–Morgan–Gangi (PMG) model [17]

and several poroelastic models [18–20] all exhibit such a singularity. In contrast to Biot�s model [2] which

is based on the artificial assumption of circular pores of constant cross- section, the JKD and PMG

models, due to the algebraic dependence of drag force/dynamic permeability on the frequency, can

be relatively easily expressed in terms of an explicit time domain operator and implemented in a time

domain numerical scheme. As shown in a review paper [21], current poroelastic models based on dou-

ble porosity, patchy saturation and squirt flow consistently lead to the same frequency dependence of
the effective dynamic permeability. In saturated porous media, memory effects are normally expected to

be relevant for signals involving frequencies of order of the transition frequencies. In the case of Biot�s
model of a microhomogeneous porous medium, the transition frequency lies at about 105Hz. However,
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increasing theoretical [22–24] and experimental [25] evidences indicate that for rocks, which are heter-

ogeneous on a scale intermediate between the pore dimensions and the wavelength, the associated atten-

uation reduces the threshold of memory effects to frequencies of order 10–100 Hz. Consequently, the

memory effects associated with drag force are relevant not only to ultrasound but also to seismic wave

propagation.
Explicit drag forces accounting for the interaction between the pore fluid and the pore walls have

been determined for some specific pore geometries, for example, aligned pores with circular, triangular

or rectangular cross-section [2]. Pride et al. [17] derived the drag force model for more general

pore geometry. In 1987, Johnson, Koplik and Dashen [16] put forward a general model of dynamic

permeability. Johnson et al. pointed out that dynamic permeability ~kðxÞ should satisfy the following

conditions: (a) the dynamic permeability function should be analytical function for the x in the upper

half-plane; (b) ~kðxÞ should have the following symmetry ~kð�xÞ ¼ ~k
�ðxÞ , where the asterisk denotes

complex-conjugation; (c) the limit of low frequency is equal to the value for static case; (d) in the limit
of high frequency the thickness of boundary layer must be smaller than all characteristic pore size.

Johnson, Koplik and Dashen [16] also put forward a general frequency-dependent model of dynamic

permeability, which we henceforth call the JKD model, to account for the interaction between the so-

lid skeleton and the fluid. It is worth noting that except for the difference in the specific expressions

for the dynamic permeability, the JKD model is in agreement with Biot�s theory, since separate inertia

interaction and viscous interaction can also be obtained in the context of the JKD model. In the pres-

ent paper, the term drag force refers to the viscous interaction force between the solid skeleton and

the fluid. Due to generality of the JKD model, it has been used in many papers on acoustics of por-
ous media [26,27] and on electro-seismology [28,29]. Moreover, Charlaix et al. [30] have experimentally

measured the dynamic permeability for samples of fused-glass beads and crushed glass. They observed

that generally the JKD model match experimental data very well. Zhou and Sheng [31] applied the

finite-element method to model the dynamic permeability for a variety of specific pore models that

have variable-width flow channels and they also found generally the JKD model could give satisfac-

tory results.

The objective of this paper is to combine Biot�s theory with the JKD dynamic permeability and use

them in wave field simulation of a heterogeneous saturated porous medium. The JKD model of por-
ous medium was originally formulated in the frequency domain [16]. However, for wave field simu-

lation of a heterogeneous porous medium, a time domain expression of the JKD model is

required. In this paper, using the shifted fractional derivative operator, the explicit time domain drag

force in the JKD model is derived for the first time. In the time domain the JKD dynamic perme-

ability is expressed by the shifted fractional derivative of relative fluid velocity. The shifted fractional

derivative of relative velocity is equivalent to a time convolution of a kernel having singularity at ini-

tial time with the relative velocity. In contrast to the exponential drag force models [14], the convo-

lution operator in the JKD model cannot be eliminated by introducing a finite number of memory
variables satisfying first-order differential relaxation equations. Therefore, in order to avoid storage

and integration of the entire velocity history required for evaluation of the fractional derivative, a

new method, which is based on the Yuan and Agrawal�s method [32] and the asymptotic analysis

of the infinite integral equivalent to the fractional derivative, for calculating the fractional derivative

is developed. Using the new method to evaluate the fractional derivative, a system of first-order dif-

ferential equations for velocities, stresses, pore pressure and the quadrature variables associated with

the shifted fractional derivatives is derived from the governing equations for the two-dimensional por-

ous medium. Spatial derivatives involved in the first-order differential equations system are calculated
by Fourier pseudospectral method, while the time derivative of the system is discretized by a predic-

tor–corrector method. For the demonstration of our method, some numerical results are given in the

paper.
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2. Incorporation of the JKD model with Biot�s theory in time domain

2.1. Definition of shifted fractional derivative operators

The drag force in the JKD model can be expressed in terms of the shifted fractional derivative [30], which
we now briefly introduce here. The shifted fractional derivative operator (D + k)a is defined by the following

formula [33]:
ðDþ kÞaf ðtÞ ¼ e�ktDa½ektf ðtÞ�; ð1Þ
where k P 0 and 0 < a < 1 , Da represents the Caputo fractional derivative [34]. For the convenience of the

derivation in the following section, we need the Laplace transform of the shifted fractional derivative. The

Laplace transformation is defined as follows:
L½f ðtÞ�ðsÞ ¼
Z 1

0

f ðtÞe�st dt. ð2Þ
The Laplace transform of the shifted fractional derivative can be calculated using the Laplace transforma-
tion of the Caputo derivative [34]
L½ðDþ kÞaf ðtÞ�ðsÞ ¼ L½e�ktDaðektf ðtÞÞ�ðsÞ ¼ L½Daðektf ðtÞÞ�ðsþ kÞ
¼ ðsþ kÞaL½ektf ðtÞ�ðsþ kÞ � f ð0þÞðsþ kÞa�1 ¼ ðsþ kÞa~f ðsÞ � f ð0þÞðsþ kÞa�1

. ð3Þ
Applying the inverse Laplace transformation to the above equation, one has
L�1½ðsþ kÞa~f ðsÞ� ¼ ðDþ kÞaf ðtÞ þ f ð0þÞe�kt t�a

Cð1� aÞ ; ð4Þ
where L�1 denotes the inverse Laplace transformation and C denotes the Gamma function.
2.2. The JKD model

As is well known, the JKD model was originally formulated in the frequency domain. In this section, by

using the shifted fractional derivative operator, the time domain drag force in the JKD model is derived for
the first time.

If the acceleration of the solid skeleton is zero, the Darcy law for porous fluid flow induced by the gra-

dient of pore pressure $p has the following form [35]:
otw :¼ /ðotU� otuÞ ¼ � k0
g
rp; ð5Þ
where U is the displacement for porous fluid, u is displacement the solid skeleton, w is the relative dis-
placement between the solid and fluid, / is the porosity, k0 is the dc permeability and g is the viscosity

of the fluid. The frequency domain Darcy law with inertial effects of the fluid included has the follow-

ing form:
ix~w ¼
~kðxÞ
g

ð�r~p þ qfx
2~uÞ; ð6Þ
where ~kðxÞ is the dynamic permeability, x is angular frequency and qf is the density of the pore fluid and

the common time factor eixt is omitted here. In frequency domain, according to the JKD model, the

dynamic permeability has the following form [16]
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~kðxÞ ¼ k0 1þ i
4a21k

2
0qfx

K2/2g

� �1=2

þ i
xa1qfk0

/g

" #�1

; ð7Þ
where a1 is tortuosity and K has the dimension of length. Substitution of Eq. (7) into Eq. (6) yields
ix~w 1þ i
4a21k

2
0qfx

K2/2g

� �1=2

þ i
xa1qfk0

/g

" #
¼ k0

g
ð�rp þ qfx

2~uÞ. ð8Þ
Introducing the transition frequency xT which separates the viscous-force-dominated flow from the iner-

tial-force-dominated flow and the geometrical factor K [16]
xT ¼ g/
qfa1k0

; K ¼ 4a1k0
K2/

. ð9a; bÞ
Eq. (8) is recast in the following form:
�r~p ¼ �qfx
2~u� mx2~wþ g

k0
a
�1

2
s ðixþ asÞ1=2ix~w; ð10Þ
where m = a1qf//, as = xT/K.
If substituting ix with s in the above equation and performing the inverse Laplace transformation on the

resulting equation and using Eq. (4), the following equation is obtained:
�rp ¼ qf€uþ m€wþ g
k0

a
�1

2
s ðDþ asÞ1=2 _w; ð11Þ
where a superimposed dot on a variable denotes time derivative. Note that in deriving Eq. (11), the zero

initial condition for u; _u;w; _w is assumed. It follows from Eq. (11) that the interaction between the pore fluid

and the solid skeleton consists of an inertia interaction part (the second term of the right-hand side of (11))

and a viscous interaction part (the third term of the right-hand side of (11)). As mentioned above, the vis-
cous term is defined as drag force in this paper. Note that the drag force here is represented by a shifted

fractional derivative of the relative velocity _w of order 1/2. In view of the non-locality of the fractional

derivative, the drag force at a fixed time depends on the entire history of velocity _w.

2.3. Combination of JKD model with Biot�s theory in time domain

Consider an unbounded heterogeneous porous medium in a Cartesian co-ordinate system xyz. The con-

stitutive equations of Biot�s theory of a saturated porous medium have the following form [3]:
rij ¼ 2leij þ kdije� adijp; ð12aÞ

p ¼ �aMeþM#; ð12bÞ

where
eij ¼
1

2
ðui;j þ uj;iÞ; e ¼ ui;i; # ¼ �wi;i. ð13a–cÞ
In the above equations, rij denotes the stress of the bulk material; p is the excess pore pressure and dij is the
Kronecker delta; eij, e are the strain tensor and the dilatation of the solid skeleton; # is the volume of fluid

injection into unit volume of bulk material; k,l are the Lame constants of the solid skeleton; a,M are the
Biot parameters [36] accounting for the compressibility of the saturated two-phase porous medium.

Combining Eqs. (12) and (13) with Eq. (11), the following equations of the motion for the bulk material

and the pore fluid are obtained:
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rij;j þ F b
i ¼ q€ui þ qf €wi; ð14aÞ

�p;i þ F f
i ¼ qf€ui þ m€wi þ

k0
g
a
�1

2
s ðDþ asÞ1=2 _wi; ð14bÞ
where q denote the bulk density of the porous material and q = (1 � /)qs + /qf, qs is the density of the solid
skeleton; F b

i ; F
f
i are the body force for a unit volume of the bulk material and the pore fluid.

2.4. Numerical comparison between the low-frequency approximation and the JKD model

In this section, we shall use a point force solution to demonstrate the difference between the low-

frequency approximation and the JKD model. Suppose a vertical point force is applied at an unbounded

two-dimensional porous medium. The low-frequency approximation with drag force denoted by the prod-

uct of the velocity and a constant and the JKD model are used in the calculation. The parameters for the

porous medium are as follows: qf = 1.0 · 103 kg/m3, qs = 2.0 · 103 kg/m3, / = 0.3, k = 1.0 · 109 Pa,

l = 2.0 · 109 Pa, a = 0.9, M = 1.0 · 1010 Pa, g = 1.0 · 10�3 Pa s, k0 = 4.0 · 10�12 m2, a1 = 3.0, K = 0.5.

The point force is of the shape of a Ricker wavelet [37] and is applied at the origin o. The value of vertical
force is given by
SðtÞ ¼ FRðtÞ; ð15Þ

where F is of the dimension N/L and R(t) is the Ricker wavelet [37] given by
RðtÞ ¼ x2
cðt � tsÞ2

2
� 1

" #
e�

x2c ðt�tsÞ2
4 . ð16Þ
The central frequency fc and the time shift ts of the vertical force are fc = 2 · 105 Hz, and ts = 10�5 s, where

fc = xc/(2p). The receiver is located at (x,z) = (0.1m,0.2m) where x,z are horizontal and vertical coordi-

nates, respectively. In terms of reference length, reference shear modulus and reference density ar,lr,qr, ref-
erence time is tr ¼ ar

ffiffiffiffiffiffiffiffiffiffiffi
qr=lr

p
.

We shall use the potential method as well as the FFT method to calculate the time domain solution of

the point force. In the frequency domain, all the variables of the two-dimension porous medium can be

represented by three potentials satisfying the following Helmholtz equations [10,38]:
r2uf þ k2fuf ¼ 0; ð17aÞ

r2us þ k2sus ¼ 0; ð17bÞ

r2wþ k2tw ¼ 0; ð17cÞ

where uf,us,w are the potentials for the fast P wave, slow P wave and S wave, respectively, and kf,ks,kt are

the corresponding complex wave numbers, and k2f ¼ ðb5Af � b4Þ=Af , k2s ¼ ðb5As � b4Þ=As, k2t ¼ b3=l,
b2 = a � qfx

2/b1, b3 ¼ qx2 � q2
fx

4=b1, b4 = qfx
2 � ab1, b5 = b1/M. For the JKD model assumed here

b1 = mx2 � ixg(1 + ixK/xT)
1/2/k0, Af, As are the solutions of the following equation:
A2
f;s þ

b3 � b2b4 � ðkþ 2lÞb5

b2b5

Af;s þ
ðkþ 2lÞb4

b2b5

¼ 0. ð18Þ
The solid and fluid displacements and the pore pressure are given by the following expressions:
ux ¼
ouf

ox
þ ous

ox
þ ow

oz
; ð19aÞ
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uz ¼
ouf

oz
þ ous

oz
� ow

ox
; ð19bÞ

wx ¼ g1
ouf

ox
þ g2

ous

ox
þ a1

ow
oz

; ð19cÞ

wz ¼ g1
ouf

oz
þ g2

ous

oz
� a1

ow
ox

; ð19dÞ

p ¼ �Afk
2
fuf � Ask

2
sus; ð19eÞ
where g1 ¼ a1 � Afk
2
f =b1, g2 ¼ a1 � Ask

2
s=b1, a1 = �qfx

2/b1. Note that the stresses of the porous medium

can be evaluated by the constitutive relations (12a).

In order to solve the full plane porous medium problem of the point force, we divide the full plane
into two domains: domain D1 above the level of attachment of the point force and domain D2 below

that level. The following continuity conditions are satisfied at the horizontal plane passing through the

point force:
ux1ðx; 0
�;xÞ ¼ ux2ðx; 0

þ;xÞ; uz1ðx; 0
�;xÞ ¼ uz2ðx; 0

þ;xÞ;
wz1ðx; 0

�;xÞ ¼ wz2ðx; 0
þ;xÞ; rzx1ðx; 0

�;xÞ ¼ rzx2ðx; 0
þ;xÞ;

p1ðx; 0�;xÞ ¼ p2ðx; 0þ;xÞ; rzz2ðx; 0
þ;xÞ � rzz1ðx; 0

�;xÞ ¼ �dðxÞF ~RðxÞ; ð20a–fÞ
where ~RðxÞ is the Fourier transform of the Ricker wavelet. Applying Fourier transformation to variable x

in Eq. (17), the general solutions involving six arbitrary constants for the potentials uf1 ;us1 ;w1ðD1Þ and

uf2 ;us2 ;w2ðD2Þ are obtained. Applying the Fourier transformation to variable x in Eq. (19) and substituting

the expressions of the potentials, the expressions for displacements, stresses and pore pressure are obtained.
Applying the Fourier transformation to variable x in Eq. (20) and substituting the expressions of displace-

ments, stresses and pore pressure, the six arbitrary constants involved in the potentials can be determined.

After determining the potentials, the frequency domain solutions can be evaluated by numerical inversion

of the Fourier transformation, while the time domain solution can be obtained by using the FFT method.

The non-dimensional velocity vz, stress rzz and pore pressure p are presented in Figs. 1(a)–(c). These re-

sults show that the low-frequency approximation gives smaller attenuation than the JKD model. It is well

known [39], Biot�s theory tends to predict significantly lower attenuation compared with experimental re-

sults for rocks. However, this situation can be partly improved if an appropriate dynamic permeability
model is used. Therefore, the singular memory effect here accounts for the additional attenuation in the

context of Biot�s theory.
2.5. Velocity–stress formulation for two-dimensional porous elastic medium

In this section, the velocity–stress formulation for the two-dimensional porous media will be con-

structed. As is well known, the velocity–stress formulation can eliminate the differentiation of the material

parameters along with the associated numerical artifacts and makes the algorithm more stable [40].
We introduce the following velocities for the solid skeleton and the pore fluid
vxðtÞ ¼ _uxðtÞ; vzðtÞ ¼ _uzðtÞ; qxðtÞ ¼ _wxðtÞ; qzðtÞ ¼ _wzðtÞ. ð21a–dÞ

Then, in terms of Eqs. (14) and (21), one has
_vxðtÞ ¼
mcs
qf

ðrxx;x þ rxz;zÞ þ csp;x þ
g
k0

csa
�1

2
s ðDþ asÞ1=2qx þ cs

m
qf

F b
x � F f

x

� �
; ð22aÞ
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Fig. 1. Comparison between the low-frequency approximation and the JKD model (a) the vertical velocity vz, (b) the pore pressure p.
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_vzðtÞ ¼
mcs
qf

ðrzx;x þ rzz;zÞ þ csp;z þ
g
k0

csa
�1

2
s ðDþ asÞ1=2qz þ cs

m
qf

F b
z � F f

z

� �
; ð22bÞ

_qxðtÞ ¼
qfcf
q

ðrxx;x þ rxz;zÞ þ cfp;x þ
g
k0

cfa
�1

2
s ðDþ asÞ1=2qx þ cf

qf

q
F b

x � F f
x

� �
; ð22cÞ

_qzðtÞ ¼
qfcf
q

ðrzx;x þ rzz;zÞ þ cfp;z þ
g
k0

cfa
�1

2
s ðDþ asÞ1=2qz þ cf

qf

q
F b

z � F f
z

� �
; ð22dÞ
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where cs ¼ qf=ðmq� q2
f Þ, cf ¼ q=ðq2

f � mqÞ. On the other hand, differentiation of Eq. (12a,b) with respect to

time and utilization of Eqs. (13) and (21) yields four first-order differential equations for the stresses and the

pore pressure
_rxxðtÞ ¼ ðkþ 2lþ a2MÞvx;x þ ðkþ a2MÞvz;z þ aMqx;x þ aMqz;z; ð23aÞ

_rzzðtÞ ¼ ðkþ a2MÞvx;x þ ðkþ 2lþ a2MÞvz;z þ aMqx;x þ aMqz;z; ð23bÞ

_rzxðtÞ ¼ lðvx;z þ vz;xÞ; ð23cÞ

_pðtÞ ¼ �aMvx;x � aMvz;z �Mqx;x �Mqz;z. ð23dÞ
For the first-order differential equation system of (22) and (23), the following initial conditions are assumed:
vxð0Þ ¼ 0; vzð0Þ ¼ 0; qxð0Þ ¼ 0; qzð0Þ ¼ 0; ð24a–dÞ

rxxð0Þ ¼ 0; rzzð0Þ ¼ 0; rzxð0Þ ¼ 0; pð0Þ ¼ 0. ð24e–hÞ

Solving Eqs. (22)–(24) in time domain requires the evaluation of the two shifted fractional derivatives in Eq.

(22). In order to show the difficulty encountered in solving Eqs. (22) and (23) by discretizing the shifted

fractional derivative directly, we will analyze the shifted fractional derivative operator involved in the drag

force fx(t). In terms of Eq. (14b), fx(t) has the form
fxðtÞ ¼
k0
g
a
�1

2
s ðDþ asÞ1=2qx. ð25Þ
Using the definition of the Caputo fractional derivative [31] and Eq. (1), Eq. (25) is rewritten as follows:
fxðtÞ ¼
k0
g
a
�1

2
s

Z t

0

e�asðt�sÞ

Cð1=2Þ ðt � sÞ�
1
2½asqxðsÞ þ _qxðsÞ� ds. ð26Þ
It follows from Eq. (26) that fx(t) depends on the entire history of qx. Also, the kernel involved in Eq. (26)
has a singularity t�1/2 at s ! t, which means that dynamic permeability exhibits a particularly strong depen-

dence on the recent velocity history. Furthermore, the kernel in the convolution of Eq. (26) cannot be

approximated by a superposition of a finite number of exponentials (a Prony sum). As a result the convo-

lution cannot be eliminated by introducing internal variables satisfying first-order differential equations

[14,15]. Consequently, if Eqs. (22)–(24) are solved in the time domain and the fractional derivatives in

Eq. (22) are directly discretized, all the history of the velocities should be stored and integrated, which

makes the wave field simulation of the heterogeneous porous medium very expensive.
3. A new method for calculating the fractional derivative Dav(t)

Before proceeding to solve the differential equations involving shifted fractional derivatives, we shall dis-

cuss the calculation of the shifted fractional derivative operator. Up to now, several numerical methods

have been proposed for the numerical approximation of the fractional derivative [34,41,42]. The fractional

derivative operator also appears in mathematical models of mechanical vibration damping [43–45]. Note

that these distributed models are based on the FEM discretization. The main drawback of these methods
consists in the necessity of storing and integrating the entire history of the related physical variables. As a

result, it is computationally very expensive or impossible to combine these methods with the pseudospectral

method to simulate wave motion in the porous medium with singular memory drag force. Recently, Yuan

and Agrawal [32] proposed a new numerical approach for calculating the fractional derivative of a function.
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The new method does not require integration and storage of the entire history of the function. Unfortu-

nately, as it will be demonstrated below, the Yuan–Agrawal method, which performs well for the discrete

mechanical system discussed in their paper, does not yield satisfactory results for the singular dynamic per-

meability considered here. Hence, in this section, a necessary improvement of the Yuan–Agrawal method

for calculating the fractional derivative will be developed.
The key point of Yuan and Agrawal�s method is to transform a fractional derivative into an infinite inte-

gral over an auxiliary internal variables. Approximating the integral by a specific quadrature formula, the

fractional derivative can be evaluated by solving ordinary differential equations for a finite set of quadra-

ture nodes. Following Yuan and Agrawal [32]:
DavðtÞ ¼
Z þ1

0

/ðy; tÞ dy; ð27aÞ

/ðy; tÞ ¼ jy2a�1

Z t

0

e�ðt�sÞy2DvðsÞ ds; ð27bÞ

_/ðy; tÞ ¼ �y2/ðy; tÞ þ jy2a�1DvðtÞ; ð27cÞ

where D :¼ d/dt and j = 2sin(pa)/p. Using the Laguerre quadrature formula [46], Eq. (27a) is approxi-

mated by the expression
DavðtÞ ¼
XN
i¼1

wðNÞ
i ey

ðNÞ
i /ðyðNÞ

i ; tÞ; ð28aÞ
where the quadrature internal variable /ðyðNÞ
i ; tÞ ði ¼ 1; 2; . . . ;NÞ satisfy the first-order relaxation equations
_/ðyðNÞ
i ; tÞ ¼ �yðNÞ2

i /ðyðNÞ
i ; tÞ þ jyðNÞ2a�1

i DvðtÞ; i ¼ 1; 2; . . . ;N ; ð28bÞ

where N denotes the number of points in the Laguerre quadrature formula. The fractional derivative of v(t)
can be determined by solving the first-order differential equations for quadrature variables

/ðyðNÞ
i ; tÞ; i ¼ 1; 2; . . . ;N and applying the quadrature formula (28a).

Similar expressions for evaluation the shifted fractional derivative defined by (1) are obtained by the

combination of Eq. (27) with Eq. (1) and utilization of the Laguerre quadrature formula
ðDþ kÞavðtÞ ¼
Z þ1

0

jy2a�1

Z t

0

e�ðt�sÞy2�kðt�sÞðkvðsÞ þ _vðsÞÞ ds
� �

dy ¼
Z þ1

0

/ðy; tÞ dy; ð29aÞ

/ðy; tÞ ¼ jy2a�1

Z t

0

e�ðt�sÞy2�kðt�sÞ kvðsÞ þ _vðsÞ½ �ds; ð29bÞ

_/ðy; tÞ ¼ �ðy2 þ kÞ/ðy; tÞ þ jy2a�1 kvðtÞ þ _vðtÞ½ �; ð29cÞ

ðDþ kÞavðtÞ ¼
XN
i¼1

wðNÞ
i ey

ðNÞ
i /ðyðNÞ

i ; tÞ; ð29dÞ

_/ðyðNÞ
i ; tÞ ¼ �ðyðNÞ2

i þ kÞ/ðyðNÞ
i ; tÞ þ jyðNÞ2a�1

i ½kvðtÞ þ _vðtÞ�; i ¼ 1; 2; . . . ;N . ð29eÞ

In terms of Eq. (29), Eq. (25) is reduced to
fxðtÞ ¼
k0
g
a
�1

2
s ðDþ asÞ1=2qx ¼

k0
g
a
�1

2
s

Z þ1

0

/ðy; tÞ dy; ð30aÞ
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/ðy; tÞ ¼ jy2a�1

Z t

0

e�ðt�sÞy2�ðt�sÞas ½asqxðsÞ þ _qxðsÞ� ds; ð30bÞ

_/ðy; tÞ ¼ �ðy2 þ asÞ/ðy; tÞ þ jy2a�1½asqxðtÞ þ _qxðtÞ�; ð30cÞ

where a = 1/2. For the time being, we assume that the relative velocity qx(t) is known in advance and has the

form of a Ricker wavelet [37]. Obviously, application of the Laguerre quadrature formula to above equa-

tion yields the solution of fx(t) in time domain directly. On the other hand, in terms of Eq. (10), the expres-

sion of fx(t) in the frequency domain has the form
~f xðxÞ ¼
ga

�1
2

s

k0
ðixþ asÞ1=2ixw. ð31Þ
Therefore, alternatively, the solution of fx(t) in time domain can also be recovered by applying the FFT

(fast Fourier transform) to Eq. (31). In numerical calculations, xT = 1000 s�1, K = 0.5, N in Eq. (29) is ta-

ken as 25 and xc, ts in Eq. (16) are taken as 400p s�1 and 0.01 s, respectively. The drag force fx(t) calculated

by Eqs. (30) and by the FFT method is shown in Fig. 2(a). It follows from Fig. 2(a) that there are significant

differences between the two solutions.
The reason for this shortcoming is the slow convergence of the quadrature formula which is due to sin-

gularity of the integrand. However, the convergence can be improved by using a more accurate quadrature

formula to evaluate the infinite integral of Eq. (29a). To this effect we consider the asymptotic behavior of

Eq. (29b). When y tends to zero, the asymptotic expression of /(y, t) is
/ðy; tÞ �
y!0

jy2a�1

Z t

0

e�kðt�sÞ½kvðsÞ þ _vðsÞ� ds. ð32Þ
On the other hand, the asymptotic expression for /(y, t) when y tends to infinity has the following form:
/ðy; tÞ �
y!1

jy2a�3½kvðtÞ þ _vðtÞ�. ð33Þ
In terms of Eqs. (32) and (33), one can conclude that when a tends to zero or one, the infinite integral in Eq.

(29a) will converge very slowly. Consequently, in this case, the Laguerre integral formula is not an efficient

way to evaluate (29a). In order to accelerate the convergence of the infinite integral, Eq. (29a) is rewritten in

the following form:
ðDþ kÞavðtÞ ¼
Z þ1

0

/ðy; tÞ dy

¼
Z c

0

/ðy; tÞ dy þ
Z þ1

c

½/ðy; tÞ � jy2a�3ðkvðtÞ þ _vðtÞÞ� dy þ j
Z þ1

c

y2a�3½kvðtÞ þ _vðtÞ� dy; ð34Þ
where c is a constant. In order to take into account the singularity at y = 0, the first integral is eval-

uated by Gauss–Jacobi quadrature formula [46]. Obviously, the second integral in the above equation

converges much faster than the original one. Moreover, the third integral can be evaluated in closed

form. Using the Gauss–Jacobi quadrature formula [46] to calculate the first integral and the shifted La-

guerre integral formula to calculate the second integral and calculating the third integral in the above

equation, one has
ðDþ kÞavðtÞ ¼
XnG
i¼1

wðnGÞ
i /ðyðnGÞi ; tÞ þ

XnL
i¼1

wðnLÞ
i /ðyðnLÞi ; tÞ þWL½kvðtÞ þ _vðtÞ�; ð35Þ
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Fig. 2. Comparison between the solutions of drag force by the fractional derivative method and the FFT method (a) the Yuan–

Agrawal method and the FFT method, (b) the improved Yuan–Agrawal method and the FFT method.
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where nG, nL are number of quadrature points for the Gauss–Jacobi quadrature formula and the shifted La-

guerre integral formula respectively, yðnGÞi ði ¼ 1; 2; . . . ; nGÞ, wðnGÞ
i ði ¼ 1; 2; . . . ; nGÞ and ynLi ði ¼ 1; 2; . . . ; nLÞ,

wnL
i ði ¼ 1; 2; . . . ; nLÞ are the corresponding abscissas and quadrature weights. In addition, WL is given by
WL ¼ j
c2a�2

2� 2a
�
XnL
i¼1

wðnLÞ
i ðyðnLÞi Þ2a�3

" #
. ð36Þ
Combination of the first two terms in Eq. (35) yields
ðDþ kÞavðtÞ ¼
XN I

i¼1

wi/ðyi; tÞ þWL½kvðtÞ þ _vðtÞ�; ð37aÞ
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wi ¼
wðnGÞ

i ; i 6 nG;

wðnLÞ
i�nG ; i > nG;

(
i ¼ 1; 2; . . . ;N I; yi ¼

yðnGÞi ; i 6 nG;

yðnLÞi�nG ; i > nG;

(
i ¼ 1; 2; . . . ;N I; ð37b; cÞ
where NI = nG + nL. Obviously, the above regularization of the integral (29a) accelerates its convergence

and more importantly, accounts for the singularity at y = 0 and y = 1.

The quadrature formula for fractional derivative operator has been improved and a new quadrature for-

mula Eq. (37) for the fractional derivative operator has been derived. For a numerical test of the proposed

quadrature formula, again, the drag force (25) is calculated by using Eq. (37) and the same parameters as
above. In calculation, nG = 10, nL = 15 and c = 1.0. Again, the numerical results obtained by Eq. (37) are

compared with the results obtained by the FFT method. Fig. 2(b) shows clearly that the results obtained by

the two methods agree very well. Therefore, in this section, a new general method for calculating the frac-

tional derivative has been developed. The new approach has the following advantages. First, for evaluating

of present solution, the storage and integration of the entire histories of variables are not needed. More-

over, the method yields sufficiently accurate results for a fractional derivative of an order 0 < a < 1 by using

a relatively small number of quadrature points, which is crucial for reducing the computational cost of the

scheme to an acceptable level.
4. Numerical scheme for the two-dimensional saturated porous medium

2D wave propagation in a saturated porous medium with the JKD dynamic permeability is described

by Eqs. (22) and (23) together with the initial condition (24). For the four equations of (22) involving

shifted fractional derivative operators, the method developed in the last section will be applied. In this

way, the four ordinary differential equations will be reduced to four ordinary differential equations sup-
plemented by the ordinary differential equations for the quadrature variables associated with the drag

force. The first-order ordinary differential equations for the velocity, stress and pore pressure together

with those for the quadrature variables constitute the differential equations system for the porous med-

ium. The Fourier pseudospectral method is used to calculate the horizontal and vertical spatial deriv-

atives. Moreover, the differential equation system is propagated in time by a predictor–corrector

method.
4.1. Differential equations for the two-dimensional porous medium in matrix form

Combining Eq. (37) with Eq. (22) and using Eqs. (23) and (24), the matrix form first-order differential

equations for all the variables are obtained as follows:
oV

ot
¼ A

oV

ox
þ B

oV

oz
þ C; Vð0Þ ¼ 0; ð38a; bÞ
where
V ¼ vx; vz; qx; qz; rxx; rzz; rzx; p; h/x
i¼1;...;N I

iN I
; h/z

i¼1;...;N I
iN I

h iT
; ð38cÞ
where vx,vz,qx,qz,rxx,rzz,rzx,p are the velocity, stress and pore pressure of the two-dimensional porous

medium; while /x
i ;/

z
i ; i ¼ 1; 2; . . . ;N I are the quadrature variables associated with the drag force in x; z

directions and h�iN I
denotes a set of NI elements; A, B are (2NI + 8) · (2NI + 8) matrices and C is

(2NI + 8) · 1 matrix. As the matrices A, B, C can be derived by (22), (23) and (37) in a rather straightfor-

ward way, hence, the entries of the matrices A, B, C are omitted here.
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4.2. Spatial discretization by the Fourier pseudospectral method

As mentioned above, for the horizontal and vertical derivatives involved in the governing equation (38),

the Fourier pseudospectral method [47] which include spatial discretization as well as the calculation of spa-

tial derivative by fast Fourier transformation (FFT) is used. In this paper, the discrete Fourier transform
(DFT) and inverse discrete Fourier transformation (IDFT) are defined as follows [48]:
Hn :¼
XN�1

k¼0

hke�2pikn=N ; hk :¼
1

N

XN�1

n¼0

Hne
2pikn=N ; ð39a; bÞ
where hk, k = 0,1,2, . . ., N � 1 and Hn, n = 0,1,2, . . ., N � 1 are N sample values in the spatial domain and

in the transformed domain, respectively.
In the calculation direction the coordinates of the sampling points are given by
xk ¼ Dxðk � 1Þ; k ¼ 1; 2; . . . ;Nx; Dx ¼ xmax

Nx � 1
; ð40a; bÞ
where xmax is the maximum distance in the calculation direction and Nx is the number of the grid points in
the calculation direction, Dx is the mesh size. Note that the period of fast Fourier transform (FFT) in the

calculation direction is equal to xmax + Dx. Moreover, due to the Hermitean property of the derivative, the

Nx in the above equation should be an odd number [47]. Obviously, if Nx is even, the DFT as shown in Eq.

(39) has a Nyquist component and the corresponding derivative loses the Hermitean property. In terms of

the definition of DFT in Eq. (39), for a given function f(x) with the transformed function ~f ðkxÞ, the deriv-
ative of f(x) is calculated by
d~f
dx

¼ ikx~f ðkxÞ; ð41aÞ

kx ¼ ðj� 1ÞDkx; j 6
Nx þ 1

2
; kx ¼ �ðNx � jþ 1ÞDkx; j >

Nx þ 1

2
; ð41b; cÞ

Dkx ¼
2p

NxDx
; j ¼ 1; 2; . . . ;Nx; ð41dÞ
where i ¼
ffiffiffiffiffiffiffi
�1

p
.

Since the spatial differentiation of the equation of motion is implemented by the FFT method, a wrap-

around effect may appear. Also, the unbounded domain is simulated by a finite domain with boundary.

Thus, the reflection from the non-physical boundary should be avoided. Therefore, an absorbing region

is added along the computational domain to prevent wrap-around and non-physical reflection [49].
5. Numerical results

In order to verify the proposed approach, the first example simulates the wave field of a point force ap-

plied in an unbounded homogeneous 2D porous medium with the JKD model. Our results from the

pseudospectral method are compared with the results obtain by the potential method. In the second exam-

ple, the wave field of a 2D porous medium with Biot�s parameter M increasing linearly with depth will be

calculated. In the third example, the wave field of a porous medium constituted of two layers with the lower

layer containing one rectangular inclusion is calculated.
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5.1. Example A: an unbounded 2D porous medium subject to a point force

In this example, the wave propagation in a 2D homogenous porous full plane with the JKD model is

simulated. Our results from the Fourier pseudospectral method are compared with those from potential

method as shown in Section 2.
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Fig. 3. Comparison of results at point 1 by the pseudospectral method and by the analytical method (a) solid velocity vz at point 1,

(b) pore pressure p at point 1.
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In this example, the parameters for the porous medium are as follows: qf = 1.0 · 103 kg/m3, qs = 2.0 ·
103 kg/m3, / = 0.3, k = 1.0 · 109 Pa, l = 2.0 · 109 Pa, a = 0.9, M = 1.0 · 1010 Pa, g = 1.0 · 10�3 Pa s,

k0 = 4.0 · 10�9 m2, a1 = 3.0, K = 0.5. Note that in order to ensure visibility of the P2 wave and also for

a thorough test of our method, the parameter k0 is larger than the normal values. Since the calculation do-

main is homogeneous, nG = 5, nL = 20 and c = 1.0 are used for all the grids. In calculation, a numerical grid
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Fig. 4. Comparison of results at point 2 by the pseudospectral method and the analytical method (a) solid velocity vz at point 2,

(b) pore pressure p at point 2.
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Nx · Nz = 141 · 141 with Dx = 1.0 m and Dz = 1.0 m is used. The dimensions of physical domain are

xmax = 140 m, zmax = 140 m. Moreover, in order to prevent the non-physical reflection and wrap-around,

absorbing strips of length 20 grid points are used around the calculation domain. The source is the vertical

force applied in the solid skeleton and the signal is a Ricker wavelet with xc = 400p s�1 and ts = 0.01 s. The

vertical point force is located at (x,z) = (40m,39m) with grid number (Ix, Iz) = (41,40) where Ix, Iz denote
the grid number in the horizontal direction and vertical direction, respectively. The first receiver (point 1) is

located at (x,z) = (60m,59m) with grid number (Ix, Iz) = (61,60), while the second receiver (point 2) is lo-

cated at (x,z) = (70m,89m) with grid number (Ix, Iz) = (71,90). The governing equations (38) are solved

over the time range 0.132 s with a time step of 4.0 · 10�5 s by using a second-order predictor–corrector

method. In Figs. 3 and 4, the plots of vz,p for the two receivers obtained by the FFT method and by

the pseudospectral method are compared. It follows from Figs. 3 and 4 that the agreement between the

FFT method and the pseudospectral method is quite good. Figs. 3 and 4 show that the P2 wave has a more
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obvious influence on p than on vz. Besides, due to attenuation, compared with the point 1, the amplitudes of

the P2 wave at the point 2 is smaller.

5.2. Example B: the porous medium with Biot�s parameter M increasing linearly with depth

This example consider the porous medium with linear variation of Biot�s parameter M with increasing

depth. The dimensions of the physical space are xmax = 3.6 m and zmax = 3.6 m. For the numerical calcula-

tion, a numerical grid Nx · Nz = 181 · 181 with Dx = Dz = 2.0 · 10�2 m is used. In order to eliminate the

non-physical reflections and the wrap-around, absorbing strips of 30 grids are used at each side of the cal-

culation domain. The parameters for the porous medium are as follows: qf = 1.0 · 103 kg/m3, qs = 2.0 ·
103 kg/m3, / = 0.3, k = 1.0 · 109 Pa, l = 2.0 · 109 Pa, a = 0.9, g = 1.0 · 10�3 Pa s, k0 = 5.0 · 10�12 m2,
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Fig. 6. Snapshots of pore pressure p in Example B (a) p for t = 0.6 ms, (b) p for t = 0.9 ms, (c) p for t = 1.2 ms.
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a1 = 3.0, K = 0.5. In calculation, nG = 5, nL = 20 and c = 5.0 are used for all the grids. Biot�s parameter M

varies linearly along the vertical direction and is given by the following formula:
MðzÞ ¼ Mð0Þ þ ðMðzmaxÞ �Mð0ÞÞ z
zmax

� �
; ð42Þ
whereM(0), M(zmax) are Biot�s parameter M for the top and the bottom grid of the calculation domain and

M(0) = 1.25 · 109 Pa, M(zmax) = 1.0 · 1010 Pa. The source is a point force applied at the solid skeleton. The

point force is oriented at 45� oblique angle with respect to the vertical direction and emits a Ricker signal
with fc = 1.0 · 104 Hz and ts = 1.5 · 10�4 s, respectively. The force is applied at the point with the grid num-

ber (Ix, Iz) = (41,41). The calculation is carried out for a total propagation time of 3.0 · 10�3 s with a time

step of 1.0 · 10�6 s by a second-order predictor–corrector method.

Figs. 5(a)–(d) show the snapshots of the vertical velocity vz at time 0.6, 0.9, 1.2 and 1.5 ms. Figs. 6(a)–(c)

show the snapshots of the pore pressure p at time 0.6, 0.9, and 1.2 ms. In Figs. 5 and 6, due to attenuation,

no P2 wave is visible. Fig. 6 shows that the pore pressure is not related to the S wave, which agrees with

Biot�s theory. Besides, Figs. 5 and 6 show that the P1 wave front propagates over a longer distance in

the vertical direction than in the horizontal direction, while the S wave propagates the same distances in
both directions. This also agrees with Biot�s theory, as in terms of Biot�s theory, Biot�s parameter M only

affect the speed of the P wave. Moreover, Fig. 6 shows clearly that due to the increasing of Biot�s parameter

M in vertical direction, the pore pressure p in the wave front of vertical direction are larger than those of the

horizontal direction.

5.3. Example C: two porous layers and a rectangular inclusion

In this example, a two-layer porous medium is considered. The bottom layer contains a rectangular
inclusion. The dimensions of the physical space are xmax = 3.2 m and zmax = 4.0 m. For numerical calcula-

tion, a grid size 161 in the horizontal direction and 201 in the vertical direction with Dx = Dz = 2.0 · 10�2 m

are used. In order to eliminate the non-physical reflections and wrap-around, absorbing strips of 30 grids

are used on each side of the calculation domain. The top porous layer stretches from grid point 1 to 81 in

the vertical direction, while the bottom layer ranges between the grid point 82 and 201 in the vertical direc-

tion. The inclusion in the bottom porous layer is located at Ix · Iz = [66,96] · [112,142] (Fig. 7). The elastic
* * * * * * * * * * * * * * * * * * * * * * * 
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Fig. 7. Two porous layers with the lower layer containing one rectangular inclusion.
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t = 1.44 ms.
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parameters of the top and bottom layer are k1 = 1.0 · 109 Pa, l1 = 2.0 · 109 Pa, M1 = 1.0 · 1010 Pa and

k2 = 5.0 · 108 Pa, l2 = 1.0 · 109 Pa, M2 = 3.0 · 109 Pa, respectively. The elastic parameters ki, li, Mi of

the inclusion take the same values as the top layer. The remaining parameters are the same for the top,

the bottom layer and the inclusion and are given as follows: qf = 1.0 · 103 kg/m3, qs = 2.0 · 103 kg/m3, /
= 0.3, a = 0.9, g = 1.0 · 10�3 Pa s, k0 = 5.0 · 10�12 m2, a1 = 3.0, K = 0.5. In calculation, nG = 5, nL = 20

and c = 5.0 are used for all the grids in the layered porous medium. The calculation is carried out for a total

propagation time of 2.4 · 10�3 s with a time step of 0.80 · 10�6 s by a second-order predictor–corrector

method. The source is a vertical point force applied in the solid skeleton and emitting the Ricker wavelet
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with fc = 1.0 · 104 Hz and ts = 1.5 · 10�4 s. The location of the vertical point force is (x,z) = (1.6m,1.2m)

corresponding to the grid number (Ix, Iz) = (81,61).

Figs. 8(a)–(d) give the snapshots of the vertical velocity vz at time 0.48, 0.72, 0.96 and 1.44 ms. Figs. 9(a)–

(d) present the snapshots of the stress rzz at time 0.48, 0.72, 0.96 and 1.44 ms, while Figs. 10(a)–(d) show the

snapshots of the pore pressure p at time 0.48, 0.72, 0.96 and 1.44 ms. At time 0.48 ms, the direct P1 and S
wave appear in the upper layer. Also, the reflected P1 wave is visible in the snapshots of the stress and pore

pressure. Besides, in the snapshot of pore pressure at time 0.48 ms, the P2 wave appears but with relatively

smaller amplitude. Note that for the vertical velocity vz, the contributions from the P1 wave are much smal-

ler than those from S wave. At time 0.72 ms, the direct P1 wave is outside the calculation domain while

the reflected P1 wave is at the edge of the domain. The direct S wave dominates in the upper layer. Also,
σzz (t=0.48 ms)

3.2

2.8

2.4

2.0

1.6

1.2

0.8

σzz (t=0.72 ms)

σzz (t=0.96 ms)

0.8 1.2 1.6 2.0 2.4

σzz (t=1.44 ms)

z 
(m

)

3.2

2.8

2.4

2.0

1.6

1.2

0.8

z 
(m

)

3.2

2.8

2.4

2.0

1.6

1.2

0.8

z 
(m

)

3.2

2.8

2.4

2.0

1.6

1.2

0.8

z 
(m

)

x (m)
0.8 1.2 1.6 2.0 2.4

x (m)

0.8 1.2 1.6 2.0 2.4

x (m)
0.8 1.2 1.6 2.0 2.4

x (m)(a) (c)

(d)(b)

Fig. 9. Snapshots of stress rzz in Example C (a) rzz for t = 0.48 ms, (b) rzz for t = 0.72 ms, (c) rzz for t = 0.96 ms, (d) rzz for t = 1.44 ms.
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the reflected P1 wave of the direct S wave can be observed. In the lower layer, the transmitted P1 wave of the

direct P1 dominates. Moreover, the transmitted P1 wave in the lower layer due to the direct S wave is visible.

In the lower layer, the reflected P1 wave from the upper boundary of the inclusion can also be observed. The

P2 wave, which was observed in the snapshot of pore pressure at 0.48 ms, is invisible at time 0.72 ms due to

high attenuation. At time 0.96 ms, in the upper layer neither the direct P1 wave nor the reflected P1 wave
can be seen. The direct S wave and the reflected S wave propagate in the upper layer. In the lower layer, the

transmitted P1 wave and S wave due to the direct S wave in the upper layer can be seen. The P1 reflection of

the transmitted P1 wave from the upper boundary of the inclusion can also be observed. Moreover, the

transmitted P1 wave in the lower layer is visible below the inclusion. It is worth noting that in Figs. 9(c)

and 10(c), the reflected P1 wave inside the inclusion can be seen. In time 1.44 ms, in the upper layer, only
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Fig. 10. Snapshots of pore pressure p in Example C (a) p for t = 0.48 ms, (b) p for t = 0.72 ms, (c) p for t = 0.96 ms, (d) p for

t = 1.44 ms.
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the reflected wave due to direct S wave from the layer interface remains. In the lower layer, the transmitted

P1 wave is at the edge of the domain, and the transmitted S wave propagates in the middle of the lower

layer. Besides, the reflected P1 wave from the upper boundary of the inclusion also appears. Moreover,

the transmitted S wave in the lower layer is much less affected by the inclusion than by the lower layer.
6. Conclusions

A new method for modeling wave propagation in a porous medium with the JKD model has been devel-

oped. The drag force in the JKD model is expressed in terms of the shifted fractional derivative of the rel-

ative fluid velocity. A new method for the calculation of the fractional derivative has been developed and

applied in solving the differential equations involving shifted fractional derivatives. The new method is also

of importance for other applied engineering sciences involving fractional derivatives. The new method of
calculating fractional derivatives avoids storage and integration of the entire variable histories in wave field

simulation. Thus, our approach is more economical than the methods based on a direct discretization of the

fractional derivative. Moreover, the combination of the new method for calculating fractional derivative

with the Fourier pseudospectral methods makes our method very efficient in terms of computer storage,

due to the fact that the Fourier pseudospectral method is accurate up to the maximum wave number of

the mesh that corresponds to a spatial wavelength of two grid points. Also, extension of our method to

the three-dimensional wave propagation is straightforward. Furthermore, material anisotropy can be easily

incorporated in our method.
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